[52] A. Bavelloni, M. Piazzi, M. Raffini, I. Faenza, and W. L. Blalock, “Prohibitin 2: At

a communications crossroads,” IUBMB Life, vol. 67, no. 4, pp. 239–254, Apr. 2015,

doi: 10.1002/iub.1366

[53] J. Transfiguracion, A. Bernier, N. Arcand, P. Chahal, and A. Kamen, “Validation of

a high-performance liquid chromatographic assay for the quantification of adeno-

virus type 5 particles,” J. Chromatogr. B-Anal. Technol. Biomed. Life Sci., vol. 761,

no. 2, pp. 187–194, Sep. 2001, doi: 10.1016/s0378-4347(01)00330-9

[54] J. Transfiguracion et al., “Rapid in-process monitoring of lentiviral vector particles

by high-performance liquid chromatography,” Mol. Ther. Methods Clin. Dev., vol.

18, pp. 803–810, Sep. 2020, doi: 10.1016/j.omtm.2020.08.005

[55] J. D. Zhu et al., “Characterization of replication-competent adenovirus isolates from

large-scale production of a recombinant adenoviral vector,” Hum. Gene Therapy,

vol. 10, no. 1, pp. 113–121, Jan. 1999, doi: 10.1089/10430349950019246

[56] B. A.-C. Hutchins, E. Simek, S. Bauer, S. Carson K.L., “Development of a

Reference Material for Characterizing Adenovirus Vectors,” Molecular Therapy,

vol. 5, no. 5, Supplement, p. S62, 2002, doi: 10.1016/S1525-0016(16)43012-1

[57] V. Aida et al., “Novel vaccine technologies in veterinary Medicine: A Herald to

human medicine vaccines,” Front. Vet. Sci., vol. 8, Apr. 2021, Art no. 654289, doi:

10.3389/fvets.2021.654289

[58] M. J. Grubman et al., “Adenovirus serotype 5-vectored foot-and-mouth disease sub-

unit vaccines: the first decade,” Future Virol., vol. 5, no. 1, pp. 51–64, Jan. 2010,

doi: 10.2217/fvl.09.68

[59] J. G. Neilan et al., “Efficacy of an adenovirus-vectored foot-and-mouth disease

virus serotype A sub-unit vaccine in cattle using a direct contact transmission

model,” BMC Vet. Res., vol. 14, no. 1, p. 254, Aug. 2018, doi: 10.1186/s12917-01

8-1582-1

[60] J. Barrera et al., “Safety profile of a replication-deficient human adenovirus-

vectored foot-and-mouth disease virus serotype A24 sub-unit vaccine in cattle,”

Transbound. Emerg. Dis., vol. 65, no. 2, pp. 447–455, Apr. 2018, doi: 10.1111/

tbed.12724

[61] E. Suder, W. Furuyama, H. Feldmann, A. Marzi, and E. de Wit, “The vesicular

stomatitis virus-based Ebola virus vaccine: From concept to clinical trials,” Hum.

Vaccine Immunother, vol. 14, no. 9, pp. 2107–2113, 2018, doi: 10.1080/21645515.

2018.1473698

[62] D. K. Clarke, D. Cooper, M. A. Egan, R. M. Hendry, C. L. Parks, and S. A. Udem,

“Recombinant vesicular stomatitis virus as an HIV-1 vaccine vector,” Springer

Semin. Immunopathol., vol. 28, no. 3, pp. 239–253, Nov. 2006, doi: 10.1007/s002

81-006-0042-3

[63] R. B. Tesh, A. Darosa, and J. S. T. Darosa, “Antigenic relationship among rhab-

doviruses infecting terrestrial vertebrates,” J. Gen. Virol., vol. 64, no. JAN,

pp. 169–176, 1983, doi: 10.1099/0022-1317-64-1-169

[64] C. H. Calisher et al., “A newly recognized vesiculovirus, calchaqui virus, and

subtypes of melao and maguari viruses from argentina, with serologic evidence for

infections of humans and horses,” Am. J. Trop. Med. Hyg., vol. 36, no. 1,

pp. 114–119, Jan 1987, doi: 10.4269/ajtmh.1987.36.114

[65] H. Tani, S. Morikawa, and Y. Matsuura, “Development and applications of VSV

vectors based on cell tropism,” Front. Microbiol., vol. 3, 2012, Art no. 272, doi:

10.3389/fmicb.2011.00272

[66] E. Suder, W. Furuyama, H. Feldmann, A. Marzi, and E. de Wit, “The vesicular

stomatitis virus-based Ebola virus vaccine: From concept to clinical trials,” Hum.

Vaccines Immunother., vol. 14, no. 9, pp. 2107–2113, 2018, doi: 10.1080/21645515

.2018.1473698

290

Bioprocessing of Viral Vaccines